Dynamic Ramsey Theory of Mechanical Systems Forming a Complete Graph and Vibrations of Cyclic Compounds

Author:

Shvalb Nir1ORCID,Frenkel Mark2ORCID,Shoval Shraga3ORCID,Bormashenko Edward2ORCID

Affiliation:

1. Department of Mechanical Engineering and Mechatronics, Faculty of Engineering, Ariel University, P.O. Box 3, Ariel 407000, Israel

2. Chemical Engineering Department, Engineering Faculty, Ariel University, P.O. Box 3, Ariel 407000, Israel

3. Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University, P.O. Box 3, Ariel 407000, Israel

Abstract

Ramsey theory constitutes the dynamics of mechanical systems, which may be described as abstract complete graphs. We address a mechanical system which is completely interconnected by two kinds of ideal Hookean springs. The suggested system mechanically corresponds to cyclic molecules, in which functional groups are interconnected by two kinds of chemical bonds, represented mechanically with two springs k1 and k2. In this paper, we consider a cyclic system (molecule) built of six equal masses m and two kinds of springs. We pose the following question: what is the minimal number of masses in such a system in which three masses are constrained to be connected cyclically with spring k1 or three masses are constrained to be connected cyclically with spring k2? The answer to this question is supplied by the Ramsey theory, formally stated as follows: what is the minimal number R(3,3)? The result emerging from the Ramsey theory is R(3,3)=6. Thus, in the aforementioned interconnected mechanical system at least one triangle, built of masses and springs, must be present. This prediction constitutes the vibrational spectrum of the system. Thus, the Ramsey theory and symmetry considerations supply the selection rules for the vibrational spectra of the cyclic molecules. A symmetrical system built of six vibrating entities is addressed. The Ramsey approach works for 2D and 3D molecules, which may be described as abstract complete graphs. The extension of the proposed Ramsey approach to the systems, partially connected by ideal springs, viscoelastic systems and systems in which elasticity is of an entropic nature is discussed. “Multi-color systems” built of three kinds of ideal springs are addressed. The notion of the inverse Ramsey network is introduced and analyzed.

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3