Spatial-Spectral Transformer for Hyperspectral Image Classification

Author:

He XinORCID,Chen Yushi,Lin Zhouhan

Abstract

Recently, a great many deep convolutional neural network (CNN)-based methods have been proposed for hyperspectral image (HSI) classification. Although the proposed CNN-based methods have the advantages of spatial feature extraction, they are difficult to handle the sequential data with and CNNs are not good at modeling the long-range dependencies. However, the spectra of HSI are a kind of sequential data, and HSI usually contains hundreds of bands. Therefore, it is difficult for CNNs to handle HSI processing well. On the other hand, the Transformer model, which is based on an attention mechanism, has proved its advantages in processing sequential data. To address the issue of capturing relationships of sequential spectra in HSI in a long distance, in this study, Transformer is investigated for HSI classification. Specifically, in this study, a new classification framework titled spatial-spectral Transformer (SST) is proposed for HSI classification. In the proposed SST, a well-designed CNN is used to extract the spatial features, and a modified Transformer (a Transformer with dense connection, i.e., DenseTransformer) is proposed to capture sequential spectra relationships, and multilayer perceptron is used to finish the final classification task. Furthermore, dynamic feature augmentation, which aims to alleviate the overfitting problem and therefore generalize the model well, is proposed and added to the SST (SST-FA). In addition, to address the issue of limited training samples in HSI classification, transfer learning is combined with SST, and another classification framework titled transferring-SST (T-SST) is proposed. At last, to mitigate the overfitting problem and improve the classification accuracy, label smoothing is introduced for the T-SST-based classification framework (T-SST-L). The proposed SST, SST-FA, T-SST, and T-SST-L are tested on three widely used hyperspectral datasets. The obtained results reveal that the proposed models provide competitive results compared to the state-of-the-art methods, which shows that the concept of Transformer opens a new window for HSI classification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 249 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3