Abstract
In order to detect the status of power equipment from infrared transmission line images under the spatial positioning relationship of the transmission line equipment, such as corridor, substation equipment, and facilities, this paper presents an improved PCNN model which merges an optimized parameter setting method. In this PCNN model, the original iteration mechanism is abandoned, and instead, the thresholding model is built by the maximum similarity thresholding rule. To ensure similarity during classifying neighboring neurons into cluster centers, a local clustering strategy is used for setting the linking coefficient, thus improving the efficiency of the method to detect the power equipment in infrared transmission line images. Finally, experimental results on transmission line infrared images show that the proposed method can provide the basis for the diagnosis of power equipment, preventing the casualties and property damage caused by the thermal damage of power equipment, and effectively improving the safety risk identification and operation control ability of power grid engineering.
Funder
research on security Risk identification and Operation Control technology of Power grid Engineering based on 3D spatial information fusion
Science and Technology Project of Headquarters of State Grid Corporation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献