Background Influence of PM2.5 in Dallas–Fort Worth Area and Recommendations for Source Apportionment

Author:

Shapero Andrew1,Keck Stella1,Love Adam H.2

Affiliation:

1. Roux, Inc., 200 Summit Drive, Burlington, MA 01803, USA

2. Roux, Inc., 555 12th Street, Oakland, CA 94607, USA

Abstract

Source apportionment of observed PM2.5 concentrations is of growing interest as communities seek ways to improve their air quality. We evaluated publicly available PM2.5 data from the USEPA in the Dallas–Fort Worth metropolitan area to determine the contributions from various PM2.5 sources to the total PM2.5 observed. The approach combines interpolation and fixed effect regression models to disentangle background from local PM2.5 contributions. These models found that January had the lowest total PM2.5 mean concentrations, ranging from 5.0 µg/m3 to 6.4 µg/m3, depending on monitoring location. July had the highest total PM2.5 mean concentrations, ranging from 8.7 µg/m3 to 11.1 µg/m3, depending on the location. January also had the lowest mean local PM2.5 concentrations, ranging from 2.6 µg/m3 to 3.6 µg/m3, depending on the location. Despite having the lowest local PM2.5 concentrations, January had the highest local attributions [51–57%]. July had the highest mean local PM2.5 concentrations, ranging from 2.9 µg/m3 to 4.1 µg/m3, depending on the location. Despite having the highest local PM2.5 concentrations, July had the lowest local attributions [33–37%]. These results suggest that local contributions have a limited effect on total PM2.5 concentrations and that the observed seasonal changes are likely the result of background influence, as opposed to modest changes in local contributions. Overall, the results demonstrate that in the Dallas–Fort Worth metropolitan area, approximately half of the observed total PM2.5 is from background PM2.5 sources and half is from local PM2.5 sources. Among the local PM2.5 source contributions in the Dallas–Fort Worth metropolitan area, our analysis shows that the vast majority is from non-point sources, such as from the transportation sector. While local point sources may have some incremental site-specific local contribution, such contributions are not clearly distinguishable in the data evaluated. We present this approach as a roadmap for disentangling PM2.5 concentrations at different spatial levels (i.e., the local, regional, or state level) and from various sectors (i.e., residential, industrial, transport, etc.). This roadmap can help decision-makers to optimize mitigatory, regulatory, and/or community efforts towards reducing total community PM2.5 exposure.

Funder

Asphalt Institute

Publisher

MDPI AG

Reference53 articles.

1. Local and regional sources of urban ambient PM2.5 exposures in Calgary, Canada;Anastasopolos;Atmos. Environ.,2022

2. World Health Organization (2021). Health Effects of Particulate Matter: Policy Implications for Countries in Eastern Europe, Caucasus, and Central Asia, World Health Organization.

3. Large-scale transport of PM2.5 in the lower troposphere during winter cold surges in China;Wang;Sci. Rep.,2017

4. Transport of Atmospheric Fine Particulate Matter: Part 1—Findings from Recent Field Programs on the Extent of Regional Transport within North America;Allen;J. Air Waste Manag. Assoc.,2008

5. PM2.5 source allocation in European cities: A SHERPA modelling study;Thunis;Atmos. Environ.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3