Effect of Water Vapor Injection on the Performance and Emissions Characteristics of a Spark-Ignition Engine

Author:

Hsueh Ming-HsienORCID,Lai Chao-Jung,Hsieh Meng-Chang,Wang Shi-Hao,Hsieh Chia-Hsin,Pan Chieh-Yu,Huang Wen-ChenORCID

Abstract

The exhaust emissions from Internal Combustion Engines (ICE) are currently one of the main sources of air pollution. This research presented a method for improving the exhaust gases and the performance of a Spark-Ignition (SI) engine using a water vapor injection system and a Non-Thermal Plasma (NTP) system. These two systems were installed on the intake manifold to investigate their effects on the engine’s performance and the characteristics of exhaust emission using different air/fuel (A/F) ratios and engine speeds. The temperatures of the injected water were adjusted to 5 and 25 °C, using a thermoelectric cooler (TEC) temperature control device. The total hydrocarbons (HC), nitrogen oxide (NOx), and engine torque were measured at different A/F ratios and engine speeds. The results indicated that the adaptation of the water vapor injection system and NTP system increased the content of the combustibles and combustion-supporting substances while achieving better emissions and torque. According to the test results, while the engine torque under 25 °C water+NTP was raised to 7.29%, the HC under 25 °C water+NTP and the NOx under 25 °C water were reduced to 16.31% and 11.88%, respectively. In conclusion, the water vapor injection and the NTP systems installed on the intake manifold could significantly reduce air pollution and improve engine performance for a more sustainable environment.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3