Abstract
Gas–oil separation by membrane stands for a promising technique in dissolved gas analysis (DGA). Since the accuracy of DGA relies on the results of gas–oil separation to a great extent, it is necessary to study the influence factor of membrane for better performance. Although plentiful studies have been conducted aiming at membrane modification to obtain better separation performance, it cannot be ignored that the conditions of oil also affect the performance of membrane much. In this work, a photoacoustic spectroscopy-based sensor for DGA, which employed membrane for gas–oil separation, was established first. By detecting the photoacoustic signal, the performance of membrane could be evaluated. Furthermore, the influences of feed velocity and pressure have on the performance of membrane were analyzed. Both simulation and experiment were employed in this work to evaluate the influences by collecting the equilibrium time of membrane under different conditions. As a result, the simulation and experiment agreed with each other well. Moreover, it was reasonable to draw the conclusion that the equilibrium time was evidently reduced with the raise of feed velocity but remained with a minimum change when pressure changed. The conclusion may serve as a reference for the application of membrane in optical sensor and DGA.
Funder
State Key Laboratory of Power Grid Environmental Protection
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献