Robotic Localization Based on Planar Cable Robot and Hall Sensor Array Applied to Magnetic Capsule Endoscope

Author:

Kim Min-Cheol,Kim Eui-Sun,Park Jong-Oh,Choi Eunpyo,Kim Chang-SeiORCID

Abstract

Recently an active locomotive capsule endoscope (CE) for diagnosis and treatment in the digestive system has been widely studied. However, real-time localization to achieve precise feedback control and record suspicious positioning in the intestine is still challenging owing to the limitation of capsule size, relatively large diagnostic volume, and compatibility of other devices in clinical site. To address this issue, we present a novel robotic localization sensing methodology based on the kinematics of a planar cable driven parallel robot (CDPR) and measurements of the quasistatic magnetic field of a Hall effect sensor (HES) array. The arrangement of HES and the Levenberg-Marquardt (LM) algorithm are applied to estimate the position of the permanent magnet (PM) in the CE, and the planar CDPR is incorporated to follow the PM in the CE. By tracking control of the planar CDPR, the position of PM in any arbitrary position can be obtained through robot forward kinematics with respect to the global coordinates at the bedside. The experimental results show that the root mean square error (RMSE) for the estimated position value of PM was less than 1.13 mm in the X, Y, and Z directions and less than 1.14° in the θ and φ orientation, where the sensing space could be extended to ±70 mm for the given 34 × 34 mm2 HES array and the average moving distance in the Z-direction is 40 ± 2.42 mm. The proposed method of the robotic sensing with HES and CDPR may advance the sensing space expansion technology by utilizing the provided single sensor module of limited sensible volume.

Funder

Korea Health Industry Development Institute

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3