Abstract
The present work employs the so-called Evolutionary Polynomial Regression (EPR) algorithm to build up a formula for the assessment of mean wave overtopping discharge for smooth sea dikes and vertical walls. EPR is a data-mining tool that combines and integrates numerical regression and genetic programming. This technique is here employed to dig into the relationship between the mean discharge and main hydraulic and structural parameters that characterize the problem under study. The parameters are chosen based on the existing and most used semi-empirical formulas for wave overtopping assessment. Besides the structural freeboard or local wave height, the unified models highlight the importance of local water depth and wave period in combination with foreshore slope and dike slope on the overtopping phenomena, which are combined in a unique parameter that is defined either as equivalent or imaginary slope. The obtained models aim to represent a trade-off between accuracy and parsimony. The final formula is simple but can be employed for a preliminary assessment of overtopping rates, covering the full range of dike slopes, from mild to vertical walls, and of water depths from the shoreline to deep water, including structures with emergent toes.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献