Abstract
The crystal chemistry of two hausmannite samples from the Kalahari manganese field (KMF), South Africa, was studied using electron-probe microanalysis (EPMA), single-crystal X-ray diffraction (SCXRD) for sample-a, and high-resolution powder X-ray diffraction (HRPXRD) for sample-b, and a synthetic Mn3O4 (97% purity) sample-c as a reference point. Hausmannite samples from the KMF were reported to be either magnetic or non-magnetic with a general formula AB2O4. The EPMA composition for sample-a is [Mn2+0.88Mg2+0.11Fe2+0.01]Σ1.00Mn3+2.00O4 compared to Mn2+Mn3+2O4 obtained by refinement. The single-crystal structure refinement in the tetragonal space group I41/amd gave R1 = 0.0215 for 669 independently observed reflections. The unit-cell parameters are a = b = 5.7556(6), c = 9.443(1) Å, and V = 312.80(7) Å3. The Jahn–Teller elongated Mn3+O6 octahedron of the M site consists of M–O × 4 = 1.9272(5), M–O × 2 = 2.2843(7), and an average <M–O>[6] = 2.0462(2) Å, whereas the Mn2+O4 tetrahedron of the T site has T–O × 4 = 2.0367(8) Å. The site occupancy factors (sof) are M(sof) = 1.0 Mn (fixed, thereafter) and T(sof) = 1.0008(2) Mn. The EPMA composition for sample-b is [Mn0.99Mg0.01](Mn1.52Fe0.48)O4. The Rietveld refinement gave R (F2) = 0.0368. The unit-cell parameters are a = b = 5.78144(1), c = 9.38346(3) Å, and V = 313.642(1) Å3. The octahedron has M–O × 4 = 1.9364(3), M–O × 2 = 2.2595(6), and average <M–O>[6] = 2.0441(2) Å, whereas T–O × 4 = 2.0438(5) Å. The refinement gave T(sof) = 0.820(9) Mn2+ + 0.180(9) Fe2+ and M(sof) = 0.940(5) Mn3+ + 0.060(5) Fe3+. Samples-a and -b are normal spinels with different amounts of substitutions at the M and T sites. The Jahn–Teller elongation, Δ(M–O), is smaller in sample-b because atom substitutions relieve strain compared to pure Mn3O4.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献