On the Effect of the Time Interval Base and Home Appliance on the Renewable Quota of a Building in an Alpine Location

Author:

Povolato Margherita,Prada AlessandroORCID,Verones Sara,Baggio PaoloORCID

Abstract

The European goal of decarbonization drives design toward high-performance buildings that maximize the use of renewable sources. Therefore, the European RED II Directive and Italian law raise the minimum renewable share required for new buildings and major renovations. Currently, the renewable energy ratio (RER) is used for the mandatory verification, obtained with a quasi-steady state calculation on a monthly basis, while much of the scientific literature uses self-consumption factor (SCF) and load coverage factor (LCF) often calculated through dynamic simulation. However, the use of a monthly balance implies the use of the national grid as a virtual battery through the net metering mechanism. The actual share of renewable coverage in the absence of expensive electric storage will necessarily be lower. The link between the different indices, the effect of the time base used in the calculation as well as the actual renewable share achieved by buildings, considering also plug loads not in the regulatory verification framework, are still open issues. This work analyzes the actual renewable share achievable for a new building in a heating-dominated climate, i.e., the mountainous area of the municipality of Trento. The renewable share is evaluated through a coupled dynamic simulation of the building and the energy systems. The results show that the RER decreases by 13% and 15% when switching from monthly to instantaneous balance in the case without and with additional home appliance loads, respectively. Similarly, simulations show how the time interval base affects the difference between the RER index and the LCF of PV energy.

Funder

MIUR-Italian Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference28 articles.

1. International Energy Agency (IEA) (2021). Tracking Buildings 2021, IEA. Available online: https://www.iea.org/reports/tracking-buildings-2021.

2. European Commissione (EU) (2021). EU energy in Figures—Statistical Pocketbook 2021, European Commission.

3. Data on cost-optimal Nearly Zero Energy Buildings (NZEBs) across Europe;Parker;Data Brief,2018

4. REPowerEU Plan (2022). Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: REPowerEU Plan, European Commission.

5. European Parliament (EU) (2018). Renewable Energy Directive (RED II), Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources, European Parliament.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3