Influence of Bismaleimide HVA-2 Grafting on the Direct Current Dielectric Properties of XLPE

Author:

Zhang Chengcheng,Wang Sen,Zhao Hong,Wang Xuan

Abstract

In this paper, N, N’-m-phenylene dimaleimide (HVA-2) grafted crosslinked polyethylene (XLPE) insulation materials with different HVA-2 contents were prepared. The grafting, crosslinking, and crystalline structure were characterized by Fourier-transform infrared spectroscopy (FTIR), Soxhlet extraction, and differential scanning calorimetry (DSC), respectively. The space charge distribution, direct current (DC) breakdown strength, and DC conduction current density were tested and the electronic structure was calculated from first-principles. HVA-2 grafting modification can significantly reduce the accumulation of space charges and the conduction current density of XLPE, but have a negative effect on DC breakdown strength. The polar groups of the grafted HVA-2 anchored on XLPE by the grafting reaction can introduce deep traps densely and evenly in XLPE, which would capture and scatter charge carriers, thus reducing the carrier concentration and mobility and further improving the space charge distribution and reducing conduction current density. However, the grafting of HVA-2 can increase the crosslinking extent of XLPE to make the crystallinity decrease and the crystallization inhomogeous, leading to a certain decrease in the breakdown strength of the grafted XLPE.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3