Author:
Yang Rui,Liu Yongbao,He Xing,Liu Zhimeng
Abstract
Due to the advantages of high convergence accuracy, fast training speed, and good generalization performance, the extreme learning machine is widely used in model identification. However, a gas turbine is a complex nonlinear system, and its sampling data are often time-sensitive and have measurement noise. This article proposes an online sequential regularization extreme learning machine algorithm based on the forgetting factor (FOS_RELM) to improve gas turbine identification performance. The proposed FOS_RELM not only retains the advantages of the extreme learning machine algorithm but also enhances the learning effect by rapidly discarding obsolete data during the learning process and improves the anti-interference performance by using the regularization principle. A detailed performance comparison of the FOS_RELM with the extreme learning machine algorithm and regularized extreme learning machine algorithm is carried out in the model identification of a gas turbine. The results show that the FOS_RELM has higher accuracy and better robustness than the extreme learning machine algorithm and regularized extreme learning machine algorithm. All in all, the proposed algorithm provides a candidate technique for modeling actual gas turbine units.
Funder
National Science and Technology Major Project of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献