Author:
Wu Qianqian,Liu Bilong,Cui Ning,Zhao Sifang
Abstract
The maglev vibration isolation system exhibits excellent micro-vibration isolation performance (0.01 Hz to 100 Hz band) in the space environment. However, a collision between the base and the floating platform may occur in an ultra-low frequency range (≤0.01 Hz). To avoid collision, the relative position and attitude between the base and the floating platform needs to be accurately tracked and controlled. In this study, a novel measurement method with four groups of two-dimensional position-sensitive detectors equipped with four laser light sources was proposed. A high-precision relative position and attitude measurement model was established based on the geometric relationship of space coordinates. A proportional-differential (PD) fixed-point control algorithm was adopted to realize tracking control. The control performance of the system was evaluated through simulation. Experiments were also carried out to verify the stability of the system and the precision of the control algorithm. A maglev vibration isolation system prototype was constructed and a test system was established. The proposed relative position and attitude measurement model was verified and the six degrees of freedom relative position and attitude response of the system was tested. Based on the measurement model, the tracking control of the system was proven to have high precision.
Funder
Shandong Provincial Natural Science Foundation, China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献