Transcriptomic Analysis Reveals Differential Expression of Genes between Lung Capillary and Post Capillary Venules in Abdominal Sepsis

Author:

Rahman MilladurORCID,Ding Zhiyi,Rönnow Carl-FredrikORCID,Thorlacius Henrik

Abstract

Lung endothelial cell dysfunction plays a central role in septic-induced lung injury. We hypothesized that endothelial cell subsets, capillary endothelial cells (capEC) and post capillary venules (PCV), might play different roles in regulating important pathophysiology in sepsis. In order to reveal global transcriptomic changes in endothelial cell subsets during sepsis, we induced sepsis in C57BL/6 mice by cecal ligation and puncture (CLP). We confirmed that CLP induced systemic and lung inflammation in our model. Endothelial cells (ECs) from lung capillary and PCV were isolated by cell sorting and transcriptomic changes were analyzed by bioinformatic tools. Our analysis revealed that lung capEC are transcriptionally different than PCV. Comparison of top differentially expressed genes (DEGs) of capEC and PCV revealed that capEC responses are different than PCV during sepsis. It was found that capEC are more enriched with genes related to regulation of coagulation, vascular permeability, wound healing and lipid metabolic processes after sepsis. In contrast, PCV are more enriched with genes related to chemotaxis, cell–cell adhesion by integrins, chemokine biosynthesis, regulation of actin filament process and neutrophil homeostasis after sepsis. In addition, we predicted some transcription factor targets that regulate a significant number of DEGs in sepsis. We proposed that targeting certain DEGs or transcriptional factors would be useful in protecting against sepsis-induced lung damage.

Funder

Vetenskapsrådet

Maggie Stephens foundation

Einar och Inga Nilssons Stiftelse för Kirurgiforskning och Forskning inom Jordbruket

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3