A Method for Assaying of Protein Kinase Activity In Vivo and Its Use in Studies of Signal Transduction in Strawberry Fruit Ripening

Author:

Wang Wei,Dai Zhengrong,Li Jie,Ouyang Jinyao,Li Tianyu,Zeng Baozhen,Kang Li,Jia Kenan,Xi Zhiyuan,Jia WensuoORCID

Abstract

Strawberry (Fragaria × ananassa) fruit ripening is regulated by a complex of cellular signal transduction networks, in which protein kinases are key components. Here, we report a relatively simple method for assaying protein kinase activity in vivo and specifically its application to study the kinase, FaMPK6, signaling in strawberry fruit. Green fluorescent protein (GFP)-tagged FaMPK6 was transiently expressed in strawberry fruit and after stimuli were applied to the fruit it was precipitated using an anti-GFP antibody. The precipitated kinase activity was measured in vitro using 32P-ATP and myelin basic protein (MBP) as substrates. We also report that FaMPK6 is not involved in the abscisic acid (ABA) signaling cascade, which is closely associated with FaMPK6 signaling in other plant species. However, methyl jasmonate (MeJA), low temperature, and high salt treatments were all found to activate FaMPK6. Transient manipulation of FaMPK6 expression was observed to cause significant changes in the expression patterns of 2749 genes, of which 264 were associated with MeJA signaling. The data also suggest a role for FaMPK6 in modulating cell wall metabolism during fruit ripening. Taken together, the presented method is powerful and its use will contribute to a profound exploration to the signaling mechanism of strawberry fruit ripening.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3