Sampling-Based Path Planning for High-Quality Aerial 3D Reconstruction of Urban Scenes

Author:

Yan Feihu,Xia Enyong,Li ZhaoxinORCID,Zhou Zhong

Abstract

Unmanned aerial vehicles (UAVs) can capture high-quality aerial photos and have been widely used for large-scale urban 3D reconstruction. However, even with the help of commercial flight control software, it is still a challenging task for non-professional users to capture full-coverage aerial photos in complex urban environments, which normally leads to incomplete 3D reconstruction. In this paper, we propose a novel path planning method for the high-quality aerial 3D reconstruction of urban scenes. The proposed approach first captures aerial photos, following an initial path to generate a coarse 3D model as prior knowledge. Then, 3D viewpoints with constrained location and orientation are generated and evaluated, according to the completeness and accuracy of the corresponding visible regions of the prior model. Finally, an optimized path is produced by smoothly connecting the optimal viewpoints. We perform an extensive evaluation of our method on real and simulated data sets, in comparison with a state-of-the-art method. The experimental results indicate that the optimized trajectory generated by our method can lead to a significant boost in the performance of aerial 3D urban reconstruction.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized structural inspection path planning for automated unmanned aerial systems;Automation in Construction;2024-12

2. Distributed Aerial 3D Object Mapping Reconstruction Using Message Passing Interface;2024 International Electronics Symposium (IES);2024-08-06

3. Multi-view 3D reconstruction based on deep learning: A survey and comparison of methods;Neurocomputing;2024-05

4. Guided by model quality: UAV path planning for complete and precise 3D reconstruction of complex buildings;International Journal of Applied Earth Observation and Geoinformation;2024-03

5. An Occlusion Signal-Processing Framework Based on UAV Sampling for Improving Rendering Quality of Views;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3