Identification and Characterization of a Phosphate-Solubilizing Bacterium and Its Growth-Promoting Effect on Moso Bamboo Seedlings

Author:

Zhang Yang1,Wan Songze23ORCID,Shi Fuxi23,Fang Xiangmin2,Huang Chao2

Affiliation:

1. Jiangxi Provincial Key Laboratory of Conservation Biology, Jiangxi Agricultural University, Nanchang 330045, China

2. Key Laboratory of National Forestry and Grassland Administration for the Protection and Restoration of Forest Ecosystem in Poyang Lake Basin, Jiangxi Agricultural University, Nanchang 330045, China

3. Matoushan Observation and Research Station of Forest Ecosystem, Fuzhou 335300, China

Abstract

Phosphate-solubilizing bacteria (PSB) offer an eco-friendly approach to boost plant growth in soils low or deficient in phosphorus (P). In this study, we isolated 97 PSB strains from the soil around moso bamboo roots in Jiangxi Province, China. The RW37 strain was identified as Enterobacter soli through its physical characteristics and genetic sequencing. Our experiments revealed that RW37 could dissolve phosphate at levels exceeding 400 mg L−1 across a wide range of environmental conditions, including temperature (25–35 °C), pH levels (3.5–7.2), salinities (0–2.0%), and volumes of medium (1/5–3/5 of flask volume), showcasing its adaptability. Furthermore, RW37 showed remarkable phosphate-solubilizing abilities at various pH levels using different phosphate sources, with the highest capacity observed in a medium containing CaHPO4. This study also found a negative correlation between P-solubilizing capacity and fermentation broth pH, indicating that RW37 likely secretes organic acids to dissolve phosphate sources. Pot experiments demonstrated that applying RW37 significantly improved the plant height, biomass, root growth, and P uptake of moso bamboo seedlings in red soil. Our results highlight the potential of RW37 as an eco-friendly biofertilizer for subtropical bamboo forests.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Department of Science and Technology Project

Jiangxi “Double Thousand Plan”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3