Composition and Functions of the Gut Microbiome in Pediatric Obesity: Relationships with Markers of Insulin Resistance

Author:

Orsso Camila E.ORCID,Peng YeORCID,Deehan Edward C.,Tan QimingORCID,Field Catherine J.,Madsen Karen L.ORCID,Walter Jens,Prado Carla M.,Tun Hein M.ORCID,Haqq Andrea M.

Abstract

The gut microbiome is hypothesized to play a crucial role in the development of obesity and insulin resistance (IR); the pathways linking the microbiome to IR in pediatrics have yet to be precisely characterized. We aimed to determine the relationship between the gut microbiome composition and metabolic functions and IR in children with obesity. In a cross-sectional study, fecal samples from children with obesity (10–16 years old) were collected for taxonomical and functional analysis of the fecal microbiome using shotgun metagenomics. The homeostatic model assessment for insulin resistance (HOMA-IR) was determined using fasting glucose and insulin. Associations between HOMA-IR and α-diversity measures as well as metabolic pathways were evaluated using Spearman correlations; relationships between HOMA-IR and β-diversity were assessed by permutational multivariate analysis of variance. Twenty-one children (nine males; median: age = 12.0 years; BMI z-score = 2.9; HOMA-IR = 3.6) completed the study. HOMA-IR was significantly associated with measures of α-diversity but not with β-diversity. Children with higher HOMA-IR exhibited lower overall species richness, Firmicutes species richness, and overall Proteobacteria species Shannon diversity. Furthermore, HOMA-IR was inversely correlated with the abundance of pathways related to the biosynthesis of lipopolysaccharides, amino acids, and short-chain fatty acids, whereas positive correlations between HOMA-IR and the peptidoglycan biosynthesis pathways were observed. In conclusion, insulin resistance was associated with decreased microbial α-diversity measures and abundance of genes related to the metabolic pathways. Our study provides a framework for understanding the microbial alterations in pediatric obesity.

Funder

Women and Children's Health Research Institute

Alberta Health Services

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3