Abstract
Tyrosinase is generally known as a melanin-forming enzyme, facilitating monooxygenation of phenols, oxidation of catechols into quinones, and finally generating biological melanin. As a homologous form of tyrosinase in plants, plant polyphenol oxidases perform the same oxidation reactions specifically toward plant polyphenols. Recent studies reported synthetic strategies for large scale preparation of hydroxylated plant polyphenols, using bacterial tyrosinases rather than plant polyphenol oxidase or other monooxygenases, by leveraging its robust monophenolase activity and broad substrate specificity. Herein, we report a novel synthesis of functional plant polyphenols, especially quercetin and myricetin from kaempferol, using screened bacterial tyrosinases. The critical bottleneck of the biocatalysis was identified as instability of the catechol and gallol under neutral and basic conditions. To overcome such instability of the products, the tyrosinase reaction proceeded under acidic conditions. Under mild acidic conditions supplemented with reducing agents, a bacterial tyrosinase from Bacillus megaterium (BmTy) displayed efficient consecutive two-step monophenolase activities producing quercetin and myricetin from kaempferol. Furthermore, the broad substrate specificity of BmTy toward diverse polyphenols enabled us to achieve the first biosynthesis of tricetin and 3′-hydroxyeriodictyol from apigenin and naringenin, respectively. These results suggest that microbial tyrosinase is a useful biocatalyst to prepare plant polyphenolic catechols and gallols with high productivity, which were hardly achieved by using other monooxygenases such as cytochrome P450s.
Funder
National Research Foundation of Korea
Industrial Strategic technology development program of Korea
Subject
Virology,Microbiology (medical),Microbiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献