Orchid Mycorrhizal Association of Cultivated Dendrobium Hybrid and Their Role in Seed Germination and Seedling Growth

Author:

Chamara R. M. S. Ruwan12ORCID,Miyoshi Kazumitsu3,Yukawa Tomohisa4,Asai Nobuyuki5,Ogura-Tsujita Yuki12ORCID

Affiliation:

1. The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto, Kagoshima 890-8580, Japan

2. Faculty of Agriculture, Saga University, 1 Honjyo-Machi, Saga 840-8502, Japan

3. Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Chiba, Japan

4. Tsukuba Botanical Garden, National Museum of Nature and Science, Amakubo, Tsukuba 305-0005, Japan

5. Asai Taikeien, Higashiura 470-2103, Aichi, Japan

Abstract

Orchids are crucial for the horticulture industry. Mycorrhizal fungi benefit crops by improving nutrition, plant growth, and disease resistance. However, the mycorrhizal association of horticultural hybrid orchids is poorly understood. To address this, we investigated mycorrhizal colonization in the entire root system and assessed the mycorrhizal community using a Dendrobium cultivar, D. Stardust ‘Firebird’, obtained from three nurseries. Additionally, we isolated and tested mycorrhizal fungi in symbiotic culture to assess their role in the seed germination and growth of Dendrobium species. All plants were colonized by mycorrhizal fungi, with a higher colonization rate in mature than in juvenile plants. Molecular identification of mycorrhizal fungi by Sanger and high-throughput sequencing revealed that the cultivar was associated with a phylogenetically diverse group of fungi, including mycorrhizal fungi from Tulasnellaceae, and several wood-decaying fungi. The Tulasnellaceae isolates significantly enhanced the seed germination of three Dendrobium species and increased the survival rate and growth of asymbiotic seedlings of D. moniliforme. This study is the first comprehensive examination of mycorrhizal associations in horticultural orchid hybrids, providing valuable insights for commercial production.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3