The Win–Win Effects of an Invasive Plant Biochar on a Soil–Crop System: Controlling a Bacterial Soilborne Disease and Stabilizing the Soil Microbial Community Network

Author:

Wang Sheng123,Wang Lei123ORCID,Li Sicong123,Zhang Tiantian4,Cai Kunzheng123ORCID

Affiliation:

1. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

2. Key Laboratory of Tropical Agricultural Environment in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China

3. Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, China

4. College of Horticulture, South China Agricultural University, Guangzhou 510642, China

Abstract

Biochar is increasingly being recognized as an effective soil amendment to enhance plant health and improve soil quality, but the complex relationships among biochar, plant resistance, and the soil microbial community are not clear. In this study, biochar derived from an invasive plant (Solidago canadensis L.) was used to investigate its impacts on bacterial wilt control, soil quality, and microbial regulation. The results reveal that the invasive plant biochar application significantly reduced the abundance of Ralstonia solanacearum in the soil (16.8–32.9%) and wilt disease index (14.0–49.2%) and promoted tomato growth. The biochar treatment increased the soil organic carbon, nutrient availability, soil chitinase, and sucrase activities under pathogen inoculation. The biochar did not influence the soil bacterial community diversity, but significantly increased the relative abundance of beneficial organisms, such as Bacillus and Sphingomonas. Biochar application increased the number of nodes, edges, and the average degree of soil microbial symbiotic network, thereby enhancing the stability and complexity of the bacterial community. These findings suggest that the invasive plant biochar produces win–win effects on plant–soil systems by suppressing soilborne wilt disease, enhancing the stability of the soil microbial community network, and promoting resource utilization, indicating its good potential in sustainable soil management.

Funder

National Natural Science Foundation of China

Science and Technology Program of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3