The Role of HIV-1-Encoded microRNAs in Viral Replication

Author:

Carmi Ofira1,Gotlieb Yosef2ORCID,Shemer-Avni Yonat3,Bentwich Zvi34

Affiliation:

1. The Department of Medical Sciences, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

2. David Yellin College of Education, Jerusalem 91035, Israel

3. The Shraga Segal Department of Microbiology Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

4. Center for Tropical Diseases and AIDS, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Abstract

microRNAs (miRNAs) are small non-coding RNAs (sncRNAs) that play an important role in the life cycle of human viruses. We sought to characterize human immunodeficiency virus 1 (HIV-1)-encoded miRNAs and determine their role in viral replication. Initially, a bioinformatic analysis was used to predict HIV-1-encoded miRNAs. Next, a representative number of these predicted sequences were verified using a miRNA microarray chip, reverse transcription PCR (RT-PCR), and the deep sequencing of RNA extracted from HIV-1-infected cells. Eight HIV-1-encoded sncRNA sequences conforming to the criteria that define miRNAs were identified in HIV-1-infected immortalized T cells and human primary CD4+ lymphocytes; five of the eight sequences have not been previously reported. Deep sequencing validated the presence of these virus-encoded miRNA sequences and uncovered large numbers of atypical sncRNA sequences, lacking characteristics of conventional miRNAs. We named these sequences small RNAs (smRNAs). The overexpression of four candidate HIV-1-encoded miRNAs and silencing of two smRNAs significantly increased HIV-1 viral replication. Our study uncovered novel HIV-1-encoded sncRNAs that, upon deregulated expression, alter viral titers in HIV-1-infected cells, suggesting that miRNAs and smRNAs play an important role in regulating viral replication. Future studies may reveal the function of HIV-1-encoded sncRNAs and their possible implications for diagnosis and treatment.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3