Goethite Enhances Cr(VI) Reduction by S. oneidensis MR-1 under Different Conditions: Mechanistic Insights

Author:

Hou Yu12,Li Yanhong12,Wang Yaru12,Zhu Zongqiang12ORCID,Tang Shen13ORCID,Zhang Jie12,Pan Qiaodong12,Hu Ting12

Affiliation:

1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China

2. Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China

3. Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China

Abstract

Chromium (Cr) contamination, widely present in the environment, poses a significant threat to both ecology and human health. Microbial remediation technology has become a hot topic in the field of heavy metal remediation due to its advantages, such as environmental protection, low cost, and high efficiency. This paper focused on using various characterization and analysis methods to investigate the bioreduction effect and mechanism of microorganisms on Cr(VI) under various influencing factors. The main contents and conclusions were as follows: Shewanella oneidensis MR-1 was selected as the target strain for studying its reduction of Cr(VI) at different inoculation amounts, temperatures, pH values, time intervals, etc. The results indicated that S. oneidensis MR-1 exhibited an optimal reduction effect on Cr(VI) at pH 7 and a temperature of 35 °C. Additionally, electron shuttles (ESs), including humic acid (HA) and 9,10-antraquinone-2,6-disulfonate (AQDS), were introduced into the degradation system to improve the reduction efficiency of S. oneidensis MR-1. Upon adding goethite further, S. oneidensis MR-1 significantly enhanced its reducing ability by converting Fe(III) minerals to Fe(II) and reducing Cr(VI) to Cr(III) during electron transfer.

Funder

National Science Foundation of China

Natural Science Foundation of Guangxi

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3