Towards Cell-Permeable Hepatitis B Virus Core Protein Variants as Potential Antiviral Agents

Author:

Bendahmane Sanaa1ORCID,Follo Marie2ORCID,Zhang Fuming3ORCID,Linhardt Robert J.3ORCID

Affiliation:

1. Private Faculty of Health Professions and Technologies, Private University of Marrakech, Marrakech 42312, Morocco

2. Department of Medicine I, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany

3. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract

Hepatitis B virus (HBV) infection remains a major health threat with limited treatment options. One of various new antiviral strategies is based on a fusion of Staphylococcus aureus nuclease (SN) with the capsid-forming HBV core protein (HBc), termed coreSN. Through co-assembly with wild-type HBc-subunits, the fusion protein is incorporated into HBV nucleocapsids, targeting the nuclease to the encapsidated viral genome. However, coreSN expression was based on transfection of a plasmid vector. Here, we explored whether introducing protein transduction domains (PTDs) into a fluorescent coreSN model could confer cell-penetrating properties for direct protein delivery into cells. Four PTDs were inserted into two different positions of the HBc sequence, comprising the amphiphilic translocation motif (TLM) derived from the HBV surface protein PreS2 domain and three basic PTDs derived from the Tat protein of human immunodeficiency virus-1 (HIV-1), namely Tat4, NP, and NS. To directly monitor the interaction with cells, the SN in coreSN was replaced with the green fluorescent protein (GFP). The fusion proteins were expressed in E. coli, and binding to and potential uptake by human cells was examined through flow cytometry and fluorescence microscopy. The data indicate PTD-dependent interactions with the cells, with evidence of uptake in particular for the basic PTDs. Uptake was enhanced by a triplicated Simian virus 40 (SV40) large T antigen nuclear localization signal (NLS). Interestingly, the basic C terminal domain of the HBV core protein was found to function as a novel PTD. Hence, further developing cell-permeable viral capsid protein fusions appears worthwhile.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3