Potential Convergence to Accommodate Pathogenicity Determinants and Antibiotic Resistance Revealed in Salmonella Mbandaka

Author:

Lv Na12,Ni Jinjing3,Fang Shiqi1,Liu Yue4,Wan Shuang1,Sun Chao1,Li Jun1ORCID,Zhou Aiping2

Affiliation:

1. Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China

2. Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200123, China

3. Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

4. Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China

Abstract

Salmonella species are causal pathogens instrumental in human food-borne diseases. The pandemic survey related to multidrug resistant (MDR) Salmonella genomics enables the prevention and control of their dissemination. Currently, serotype Mbandaka is notorious as a multiple host-adapted non-typhoid Salmonella. However, its epidemic and MDR properties are still obscure, especially its genetic determinants accounting for virulence and MD resistance. Here, we aim to characterize the genetic features of a strain SMEH pertaining to Salmonella Mbandaka (S. Mbandaka), isolated from the patient’s hydropericardium, using cell infections, a mouse model, antibiotic susceptibility test and comparative genomics. The antibiotic susceptibility testing showed that it could tolerate four antibiotics, including chloramphenicol, tetracycline, fisiopen and doxycycline by Kirby–Bauer (K-B) testing interpreted according to the Clinical and Laboratory Standards Institute (CLSI). Both the reproducibility in RAW 264.7 macrophages and invasion ability to infect HeLa cells with strain SMEH were higher than those of S. Typhimurium strain 14028S. In contrast, its attenuated virulence was determined in the survival assay using a mouse model. As a result, the candidate genetic determinants responsible for antimicrobial resistance, colonization/adaptability and their transferability were comparatively investigated, such as bacterial secretion systems and pathogenicity islands (SPI-1, SPI-2 and SPI-6). Moreover, collective efforts were made to reveal a potential role of the plasmid architectures in S. Mbandaka as the genetic reservoir to transfer or accommodate drug-resistance genes. Our findings highlight the essentiality of antibiotic resistance and risk assessment in S. Mbandaka. In addition, genomic surveillance is an efficient method to detect pathogens and monitor drug resistance. The genetic determinants accounting for virulence and antimicrobial resistance underscore the increasing clinical challenge of emerging MDR Mbandaka isolates, and provide insights into their prevention and treatment.

Funder

Double Thousand Talents Plan of Jiangxi

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3