Examining the Effect of Freezing Temperatures on the Survival Rate of Micro-Encapsulated Probiotic Lactobacillus acidophilus LA5 Using the Flash Freeze-Drying (FFD) Strategy

Author:

Acosta-Piantini Elsa12ORCID,Villarán Maria Carmen3ORCID,Martínez Ángel2,Lombraña José Ignacio1ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Science and Technology, UPV/EHU, P.O. Box 644, 48080 Bilbao, Spain

2. School of Chemical Engineering, University Autonomous of Santo Domingo (UASD), Santo Domingo 10105, Dominican Republic

3. TECNALIA, Basque Research and Technology Alliance (BRTA), 01510 Vitoria-Gasteiz, Spain

Abstract

This work proposes a novel drying method suitable for probiotic bacteria, called flash freeze-drying (FFD), which consists of a cyclic variation in pressure (up-down) in a very short time and is applied during primary drying. The effects of three FFD temperatures (−25 °C, −15 °C, and −3 °C) on the bacterial survival and water activity of Lactobacillus acidophilus LA5 (LA), previously microencapsulated with calcium alginate and chitosan, were evaluated. The total process time was 900 min, which is 68.75% less than the usual freeze-drying (FD) time of 2880 min. After FFD, LA treated at −25 °C reached a cell viability of 89.94%, which is 2.74% higher than that obtained by FD, as well as a water activity of 0.0522, which is 55% significantly lower than that observed using FD. Likewise, this freezing temperature showed 64.72% cell viability at the end of storage (28 days/20 °C/34% relative humidity). With the experimental data, a useful mathematical model was developed to obtain the optimal FFD operating parameters to achieve the target water content in the final drying.

Funder

University of Basque Country

Ministry of Higher Education, Science and Technology (MESCYT) of the Dominican Republic

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3