Response of Soil Fungal Community to Reforestation on Shifting Sand Dune in the Horqin Sandy Land, Northeast China

Author:

Cao Chengyou12ORCID,Zhang Ying12,Cui Zhenbo12

Affiliation:

1. College of Life and Health Sciences, Northeastern University, Shenyang 110169, China

2. Liaoning Province Key Laboratory of Bioresource Research and Development, Northeastern University, Shenyang 110169, China

Abstract

Reforestation of native shrub on shifting sand dunes has been widely used for desertification control in semi-arid grassland in Northeast China. Previous studies have confirmed that plantation establishment facilitates fixing sand dunes, restoring vegetation, and improving soil properties, but very few have focused on the response of the soil fungal community. In this study, a chronosequence of Caragana microphylla (CM) shrub sand-fixation plantations (8-, 19-, and 33-year-old), non-vegetated shifting sand dunes (0 years), and adjacent natural CM forests (NCFs; 50-year-old) in the Horqin sandy land were selected as experimental sites. Soil properties including enzymatic activities were determined, and the composition and structure of the soil fungal community were investigated using the Illumina MiSeq sequencing technique based on the internal transcribed spacer (ITS) rDNA. This study aimed to (1) describe the response of the soil fungal community to revegetation onto a moving sand dune by planting a native shrub plantation; (2) determine the main soil factors driving the succession of the fungal community; and (3) discuss whether the soil fungal community can be restored to its original state by reforestation. The reforestation of CM significantly ameliorated soil properties, increased soil fungal diversity, and altered the composition and structure of the soil fungal community. Ascomycota, Basidiomycota, and Zoopagomycota were the dominant phyla in all sites. Ascomycota did not respond to plantation development, whereas the other two dominant phyla linearly increased or decreased with the plantation age. The relative abundance of dominant genera varied with sites and showed a waning and waxing characteristic. The composition and structure of the soil fungal community in the 33-year CM plantation were very close to that of the NCF, indicating the restorability of the soil fungal community. The succession of the soil fungal community was directly driven by soil properties, of which soil moisture, organic matter, total N, urease, and protease were the main affecting factors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3