Bacillus velezensis Y6, a Potential and Efficient Biocontrol Agent in Control of Rice Sheath Blight Caused by Rhizoctonia solani

Author:

Tao Huan12ORCID,Li Xiaoyu2,Huo Huazhen1,Cai Yanfei2,Cai Aihua1

Affiliation:

1. Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China

2. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510462, China

Abstract

Rice sheath blight is a serious disease caused by Rhizoctonia solani that reduces rice yield. Currently, there is a lack of efficient and environmentally friendly control methods. In this study, we found that Bacillus velezensis (B. velezensis) Y6 could significantly inhibit the growth of mycelium in Rhizoctonia solani, and its control efficiency against rice sheath blight was 58.67% (p < 0.01) in a pot experiment. Lipopeptides play an important role in the control of rice sheath blight by B. velezensis Y6, among which iturin and fengycin are essential, and iturin W, a novel lipopeptide in B. velezensis, plays a major role in lipopeptide antagonism to Rhizoctonia solani. In the field, we also found that inoculation with B. velezensis Y6 can increase rice yield (dry weight) by 11.75%. Furthermore, the transcriptome profiling results of the rice roots revealed that there were a total of 1227 differential genes (DEGs) regulated when treated with Y6, of which 468 genes were up-regulated and 971 genes were down-regulated in rice roots compared with the control. Among them, the DEGs were mainly distributed in biological processes (BP) and were mainly enriched in response to stimulus (GO:0050896), response to stress (GO:0006950), and response to abiotic stimulus (GO:0009628). According to the KEGG pathway analysis, there were 338 DEGs classified into 87 KEGG functional pathway categories. Compared with the control, a large number of enriched genes were distributed in phenylpropanoid biosynthesis (map00940), glutathione metabolism (map00480), glycolysis/gluconeogenesis (map00010), and amino sugar and nucleotide sugar metabolism (map00520). In summary, this investigation provides a new perspective for studying the molecular mechanism of B. velezensis in controlling rice sheath blight.

Funder

National Natural Science Foundation of China

Fundamental Research Fund of Guangxi Institute of Botany

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3