Bacterial Succession during Vermicomposting of Silver Wattle (Acacia dealbata Link)

Author:

Rosado Daniela,Pérez-Losada MarcosORCID,Aira Manuel,Domínguez Jorge

Abstract

Vermicomposting is the process of organic waste degradation through interactions between earthworms and microbes. A variety of organic wastes can be vermicomposted, producing a nutrient-rich final product that can be used as a soil biofertilizer. Giving the prolific invasive nature of the Australian silver wattle Acacia dealbata Link in Europe, it is important to find alternatives for its sustainable use. However, optimization of vermicomposting needs further comprehension of the fundamental microbial processes. Here, we characterized bacterial succession during the vermicomposting of silver wattle during 56 days using the earthworm species Eisenia andrei. We observed significant differences in α- and β-diversity between fresh silver wattle (day 0) and days 14 and 28, while the bacterial community seemed more stable between days 28 and 56. Accordingly, during the first 28 days, a higher number of taxa experienced significant changes in relative abundance. A microbiome core composed of 10 amplicon sequence variants was identified during the vermicomposting of silver wattle (days 14 to 56). Finally, predicted functional profiles of genes involved in cellulose metabolism, nitrification, and salicylic acid also changed significantly during vermicomposting. This study, hence, provides detailed insights of the bacterial succession occurring during vermicomposting of the silver wattle and the characteristics of its final product as a sustainable plant biofertilizer.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mediators of biomass transformation – A focus on the enzyme composition of the vermicomposting process;Environmental Challenges;2023-08

2. Recycling and valorization of distilled grape marc through vermicomposting: a pilot-scale study;Journal of Material Cycles and Waste Management;2023-03-07

3. Metagenomic analysis revealing the dual microbial community features in three common vermicomposts;Fate of Biological Contaminants During Recycling of Organic Wastes;2023

4. Vermicomposting technology for organic waste management;Current Developments in Biotechnology and Bioengineering;2023

5. Vermicomposting as an Eco-Friendly Approach for Recycling and Valorization Grape Waste;Vermicomposting for Sustainable Food Systems in Africa;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3