Molecular Profiles of Multiple Antimalarial Drug Resistance Markers in Plasmodium falciparum and Plasmodium vivax in the Mandalay Region, Myanmar

Author:

Lê Hương Giang,Naw Haung,Kang Jung-Mi,Võ Tuấn Cường,Myint Moe Kyaw,Htun Zaw Than,Lee JinyoungORCID,Yoo Won GiORCID,Kim Tong-Soo,Shin Ho-Joon,Na Byoung-KukORCID

Abstract

Emergence and spreading of antimalarial drug resistant malaria parasites are great hurdles to combating malaria. Although approaches to investigate antimalarial drug resistance status in Myanmar malaria parasites have been made, more expanded studies are necessary to understand the nationwide aspect of antimalarial drug resistance. In the present study, molecular epidemiological analysis for antimalarial drug resistance genes in Plasmodium falciparum and P. vivax from the Mandalay region of Myanmar was performed. Blood samples were collected from patients infected with P. falciparum and P. vivax in four townships around the Mandalay region, Myanmar in 2015. Partial regions flanking major mutations in 11 antimalarial drug resistance genes, including seven genes (pfdhfr, pfdhps, pfmdr-1, pfcrt, pfk13, pfubp-1, and pfcytb) of P. falciparum and four genes (pvdhfr, pvdhps, pvmdr-1, and pvk12) of P. vivax were amplified, sequenced, and overall mutation patterns in these genes were analyzed. Substantial levels of mutations conferring antimalarial drug resistance were detected in both P. falciparum and P. vivax isolated in Mandalay region of Myanmar. Mutations associated with sulfadoxine-pyrimethamine resistance were found in pfdhfr, pfdhps, pvdhfr, and pvdhps of Myanmar P. falciparum and P. vivax with very high frequencies up to 90%. High or moderate levels of mutations were detected in genes such as pfmdr-1, pfcrt, and pvmdr-1 associated with chloroquine resistance. Meanwhile, low frequency mutations or none were found in pfk13, pfubp-1, pfcytb, and pvk12 of the parasites. Overall molecular profiles for antimalarial drug resistance genes in malaria parasites in the Mandalay region suggest that parasite populations in the region have substantial levels of mutations conferring antimalarial drug resistance. Continuous monitoring of mutations linked with antimalarial drug resistance is necessary to provide useful information for policymakers to plan for proper antimalarial drug regimens to control and eliminate malaria in the country.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3