Construction and Application of a Plasmid-Based Signal Peptide Library for Improved Secretion of Recombinant Proteins with Priestia megaterium

Author:

Mayer Janine,Knuuti Tobias,Baumgarten Lisa,Menke Elise,Bischoff Lena,Bunk BoykeORCID,Biedendieck RebekkaORCID

Abstract

The secretion of recombinant proteins plays an important role in their economic production and purification. The secretion efficiency depends on the responsible signal peptide (SP) in combination with the target protein and the given host and cannot be predicted so far. Due to its high plasmid stability, the lack of alkaline extracellular proteases and only few contaminating extracellular host proteins, Priestia megaterium provides a promising alternative to common Bacillus species. For the development of an easy and fast cloning and screening system to identify the SP best suited to a distinct protein, a plasmid-based SP library containing all predicted 182 Sec-dependent SPs from P. megaterium was established. The splitting of the SPs into 10 groups of individual multi-SP plasmids (pMSPs) allows their grouped amplification and application in screening approaches. The functionality of the whole library was demonstrated by enhancing the amount of the already well-secreted α-amylase AmyE by 1.6-fold. The secretion of a novel penicillin G acylase, which remained as insoluble protein inside the cells, as its native SP is unsuitable for secretion in P. megaterium, could be enhanced even up to 29-fold. Overall, only around 170 recombinant P. megaterium clones based on 50 inserted SPs had to be screened to achieve sufficient amounts for further enzyme characterizations. Thus, this newly developed plasmid-based genetic tool applicable for P. megaterium and also other Bacillus species facilitates the identification of suitable SPs for secretion of recombinant proteins.

Funder

Deutsche Forschungsgemeinschaft

Volkswagen Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3