Different Gut Microbiomes of Developmental Stages of Field-Collected Native and Invasive Western Bean Cutworm, Striacosta albicosta, in Western Nebraska

Author:

Ayayee Paul A.,Currie Austin,Peterson Julie A.ORCID

Abstract

While insects harbor gut microbial associates that perform various functions for the host, lepidopterans have not been considered as prime examples of having such relationships. The western bean cutworm, Striacosta albicosta (Lepidoptera: Noctuidae), is native to North America and has historically been a significant corn pest in its western distribution. It is currently expanding eastwards and is invasive in these new regions. Using 16S rRNA gene sequencing data, this study focused on characterizing the microbiota associated with field-collected eggs, larvae, adults, and host plant materials of S. albicosta in its native range. The diversity of microbiomes varied significantly among S. albicosta eggs, larvae, adults, and the host plant materials. Microbial diversity was highest in adult stages relative to other insect stages. Furthermore, S. albicosta eggs, larvae, and adults harbored very distinct microbial communities, indicative of stage-specific microbiomes possibly performing different functions. Bacterial taxa underscoring these differences in composition identified four phyla and thirty families across samples. Members of the Firmicutes (Unassigned Lactobacillales), Proteobacteria (Pseudomonadaceae and Moraxellaceae), Bacteroidota (Weeksellaceae), and Chloroflexi dominated across all developmental stages. In addition, cellulose-degrading Lactobacillales (phylum: Firmicutes) dominated larval microbiomes, indicative of larval plant diet. This taxon was comparatively negligible in eggs and adults. Members of Proteobacteria dominated egg and host leaf microbiomes, while members of Bacteroidota dominated nectar-feeding adult gut microbiomes. Our results suggest a possible diet-dependent stage-specific microbiome composition and the potential for using stage-specific microbes as potential biological control tools against this important pest moving forward.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3