Distribution Patterns of Antibiotic Resistance Genes and Their Bacterial Hosts in a Manure Lagoon of a Large-Scale Swine Finishing Facility

Author:

Begmatov ShahjahonORCID,Beletsky Alexey V.,Gruzdev Eugeny V.,Mardanov Andrey V.ORCID,Glukhova Lubov B.ORCID,Karnachuk Olga V.ORCID,Ravin Nikolai V.ORCID

Abstract

The spread of antibiotic resistance genes (ARGs) that are present in livestock manures, which are discharged into the environment, is a severe threat to human and animal health. Here, we used 16S rRNA gene profiling and metagenomic analysis to characterize microbial community composition and antibiotic resistance in a manure storage lagoon from a large-scale swine finishing facility. Manure samples were collected at intervals of two years. Both the prokaryotic community and the resistome were dominated by the Firmicutes, Proteobacteria and Bacteroidota. Metagenomic analysis of two samples revealed 726 and 641 ARGs classified into 59 and 46 AMR gene families. Besides multidrug efflux pumps, the predominating ARGs potentially encoded resistance to tetracyclines, macrolide–lincosamide–streptogramin, aminoglycosides, peptide antibiotics, rifamycin, chloramphenicol, and beta-lactams. Genes from all predominant AMR gene families were found in both samples indicating overall long-term stability of the resistome. Antibiotic efflux pumps were the primary type of ARGs in the Proteobacteria, while antibiotic target alteration or protection was the main mechanism of resistance in the Firmicutes, Actinobacteriota and Bacteroidota. Metagenome-assembled genomes (MAG) of four multidrug-resistant strains were assembled. The first MAG, assigned to Escherichia flexneri, contained 46 ARGs, including multidrug efflux pumps, modified porins, beta-lactamases, and genes conferring resistance to peptide antibiotics. The second MAG, assigned to the family Alcaligenaceae, contained 18 ARGs encoding resistance to macrolide–lincosamide–streptogramin, tetracyclines, aminoglycosides and diaminopyrimidins. Two other MAGs representing the genera Atopostipes and Prevotella, contained four and seven ARGs, respectively. All these MAGs represented minor community members and accounted for less than 0.3% of the whole metagenome. Overall, a few lineages originated from the gut but relatively rare in the manure storage lagoon, are the main source of ARGs and some of them carry multiple resistance determinants.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3