Diversity and Taxonomy of Soil Bacterial Communities in Urban and Rural Mangrove Forests of the Panama Bay

Author:

Quintero Indira J.,Castillo Anakena M.ORCID,Mejía Luis C.ORCID

Abstract

Mangrove ecosystems are threatened worldwide by a wide range of factors including climate change, coastal development, and pollution. The effects of these factors on soil bacterial communities of Neotropical mangroves and their temporal dynamics is largely undocumented. Here we compared the diversity and taxonomic composition of bacterial communities in the soil of two mangrove forest sites of the Panama Bay: Juan Diaz (JD), an urban mangrove forest in Panama City surrounded by urban development, with occurrence of five mangrove species, and polluted with solid waste and sewage; and Bayano (B), a rural mangrove forest without urban development, without solid waste pollution, and with the presence of two mangrove species. Massive amplicon sequencing of the V4 region of the 16S rRNA gene and community analyses were implemented. In total, 20,691 bacterial amplicon sequence variants were identified, and the bacterial community was more diverse in the rural mangrove forest based on Faith’s phylogenetic diversity index. The three dominant phyla of bacteria found and shared between the two sites were Proteobacteria, Desulfobacterota, and Chloroflexi. The ammonia oxidizing archaea class Nitrosphaeria was found among the top 10 most abundant. Dominant genera of bacteria that occurred in the two mangrove sites were: BD2-11_terrestrial_group (Gemmatimonadota), EPR3968-O8a-Bc78 (Gammaproteobacteria), Salinimicrobium (Bacteroidetes), Sulfurovum (Campylobacteria), and Woeseia (Gammaproteobacteria) of which the first three and Methyloceanibacter had increased in relative abundance in the transition from rainy to dry to rainy season in the urban mangrove forest. Altogether, our study suggests that factors such as urban development, vegetation composition, pollution, and seasonal changes may cause shifts in bacterial diversity and relative abundance of specific taxa in mangrove soils. In particular, taxa with roles in biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus, and on rhizosphere taxa, could be important for mangrove plant resilience to environmental stress.

Funder

SENACYT Agreement

SENACYT grant

University of Panama VIP 2019 Research Fund

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3