Phosphate-Solubilizing Bacteria: Advances in Their Physiology, Molecular Mechanisms and Microbial Community Effects

Author:

Pan Lin1,Cai Baiyan12

Affiliation:

1. Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, Key Laboratory of Molecular Biology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China

2. Hebei Key Laboratory of Agroecological Safety, Hebei University of Environmental Engineering, Qinhuangdao 066102, China

Abstract

Phosphorus is an essential nutrient for all life on earth and has a major impact on plant growth and crop yield. The forms of phosphorus that can be directly absorbed and utilized by plants are mainly HPO42− and H2PO4−, which are known as usable phosphorus. At present, the total phosphorus content of soils worldwide is 400–1000 mg/kg, of which only 1.00–2.50% is plant-available, which seriously affects the growth of plants and the development of agriculture, resulting in a high level of total phosphorus in soils and a scarcity of available phosphorus. Traditional methods of applying phosphorus fertilizer cannot address phosphorus deficiency problems; they harm the environment and the ore material is a nonrenewable natural resource. Therefore, it is imperative to find alternative environmentally compatible and economically viable strategies to address phosphorus scarcity. Phosphorus-solubilizing bacteria (PSB) can convert insoluble phosphorus in the soil into usable phosphorus that can be directly absorbed by plants, thus improving the uptake and utilization of phosphorus by plants. However, there is no clear and systematic report on the mechanism of action of PSB. Therefore, this paper summarizes the discovery process, species, and distribution of PSB, focusing on the physiological mechanisms outlining the processes of acidolysis, enzymolysis, chelation and complexation reactions of PSB. The related genes regulating PSB acidolysis and enzymatic action as well as genes related to phosphate transport and the molecular direction mechanism of its pathway are examined. The effects of PSB on the structure and abundance of microbial communities in soil are also described, illustrating the mechanism of how PSB interact with microorganisms in soil and indirectly increase the amount of available phosphorus in soil. And three perspectives are considered in further exploring the PSB mechanism in utilizing a synergistic multi-omics approach, exploring PSB-related regulatory genes in different phosphorus levels and investigating the application of PSB as a microbial fungicide. This paper aims to provide theoretical support for improving the utilization of soil insoluble phosphorus and providing optimal management of elemental phosphorus in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3