Two Bacillus spp. Strains Improve the Structure and Diversity of the Rhizosphere Soil Microbial Community of Lilium brownii var. viridulum

Author:

Tu Jing1,Zhao Xin2,Yang Yuanru2,Yi Yongjian2,Wang Hongying2,Wei Baoyang1,Zeng Liangbin2

Affiliation:

1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410125, China

2. Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China

Abstract

Lily Fusarium wilt disease caused by Fusarium spp. spreads rapidly and is highly destructive, leading to a severe reduction in yield. In this study, lily (Lilium brownii var. viridulum) bulbs were irrigated after planting with suspensions of two Bacillus strains that effectively control lily Fusarium wilt disease to assess their effects on the rhizosphere soil properties and microbial community. A high-throughput sequencing of microorganisms in the rhizosphere soil was performed and the soil physicochemical properties were measured. The FunGuild and Tax4Fun tools were used for a functional profile prediction. The results showed that Bacillus amyloliquefaciens BF1 and B. subtilis Y37 controlled lily Fusarium wilt disease with control efficacies of 58.74% and 68.93%, respectively, and effectively colonized the rhizosphere soil. BF1 and Y37 increased the bacterial diversity and richness of the rhizosphere soil and improved the physicochemical properties of the soil, thereby favoring the proliferation of beneficial microbes. The relative abundance of beneficial bacteria was increased and that of pathogenic bacteria was decreased. Bacillus abundance in the rhizosphere was positively correlated with most soil physicochemical properties, whereas Fusarium abundance was negatively correlated with most physicochemical properties. Functional prediction revealed that irrigation with BF1 and Y37 significantly upregulated glycolysis/gluconeogenesis among metabolism and absorption pathways. This study provides insights into the mechanism by which two Bacillus strains with antifungal activity, BF1 and Y37, antagonize plant pathogenic fungi and lays the foundation for their effective application as biocontrol agents.

Funder

Hunan Provincial Key R&D Program Project

Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3