Phenol Degradation by Pseudarthrobacter phenanthrenivorans Sphe3

Author:

Asimakoula Stamatia1ORCID,Marinakos Orfeas1,Tsagogiannis Epameinondas1,Koukkou Anna-Irini1ORCID

Affiliation:

1. Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece

Abstract

Phenol poses a threat as one of the most important industrial environmental pollutants that must be removed before disposal. Biodegradation is a cost-effective and environmentally friendly approach for phenol removal. This work aimed at studying phenol degradation by Pseudarthrobacter phenanthrenivorans Sphe3 cells and also, investigating the pathway used by the bacterium for phenol catabolism. Moreover, alginate-immobilized Sphe3 cells were studied in terms of phenol degradation efficiency compared to free cells. Sphe3 was found to be capable of growing in the presence of phenol as the sole source of carbon and energy, at concentrations up to 1500 mg/L. According to qPCR findings, both pathways of ortho- and meta-cleavage of catechol are active, however, enzymatic assays and intermediate products identification support the predominance of the ortho-metabolic pathway for phenol degradation. Alginate-entrapped Sphe3 cells completely degraded 1000 mg/L phenol after 192 h, even though phenol catabolism proceeds slower in the first 24 h compared to free cells. Immobilized Sphe3 cells retain phenol-degrading capacity even after 30 days of storage and also can be reused for at least five cycles retaining more than 75% of the original phenol-catabolizing capacity.

Funder

Hellenic Foundation for Research and Innovation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3