Structural Characteristics and Assembly Mechanisms of Soil Microbial Communities under Water–Salt Gradients in Arid Regions

Author:

Yang Guang12,Jiang Lamei12,Li Wenjing12,Li Eryang12,Lv Guanghui12ORCID

Affiliation:

1. College of the Ecology and Environment, Xinjiang University, Urumqi 830017, China

2. Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi 830046, China

Abstract

Exploring the structural characteristics of arid soil microbial communities and their assembly mechanisms is important for understanding the ecological characteristics of arid zone soils and promoting ecological restoration. In this study, we used Illumina high-throughput sequencing technology to study soils in the arid zone of the Lake Ebinur basin, determined the differences among soil microbial community structures in the study area under different water–salt gradients, and investigated the effects of environmental factors on microbial community structure and assembly mechanisms. The results show the following: the microbial community alpha diversity exhibited a significantly higher low water–salt gradient (L) than high water–salt gradient (H) and medium water–salt gradient (M). The pH was most strongly correlated with soil microbial community structure, where the alpha diversity indices of the bacterial community and fungal community were significantly negatively correlated with pH, and the Bray–Curtis distance of bacterial community was significantly positively correlated with pH (p < 0.05). The complexity of bacterial community co-occurrence networks showed a significantly higher L than H and M, and the complexity of fungal community co-occurrence network showed a significantly lower L than H and M. The cooperative relationship of H and M in the co-occurrence networks was stronger than that of the L, and the key species of the microbial co-occurrence network were different under different water–salt gradients. Stochastic processes dominated the assembly mechanism of the microbial community structure of soil, and the explanation rates of deterministic and stochastic processes were different under different water–salt gradients, with the highest explanation rate of stochastic processes on the L accounting for more than 90%. In summary, the soil microbial community structure and assembly mechanisms significantly differed across water–salt gradients, and these findings can help provide a reference for further research on soil microbiology in arid zones.

Funder

National Natural Science Foundation of China

Xinjiang Uygur Autonomous Region innovation environment Construction special project & Science and technology innovation base

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3