Taxonomic Study of Three Novel Paenibacillus Species with Cold-Adapted Plant Growth-Promoting Capacities Isolated from Root of Larix gmelinii

Author:

Xue HanORCID,Tu YanORCID,Ma TengfeiORCID,Jiang NingORCID,Piao Chungen,Li Yong

Abstract

Exploration of the novel species of the genus Paenibacillus with plant-growth promoting characteristics at the low-temperature environment is of great significance for the development of psychrotolerant biofertilizer in forestry and agriculture. During the course of isolation of root endophytes of Larix gmelinii in the island frozen soil, three strains designated as T3-5-0-4, N1-5-1-14 and N5-1-1-5 were isolated. The three strains showed plant growth-promoting properties at the low temperature, such as phosphate solubilization, indole-3-acetic acid biosynthesis and siderophore production. According to pairwise sequence analyses of the 16S rRNA genes, the three strains represent putatively novel taxa within the genus Paenibacillus. The strains have typical chemotaxonomic characteristics of the genus Paenibacillus by having meso-diaminopimelic acid as diagnostic diamino acid, anteiso-C15:0 as the predominant fatty acid and MK-7 as the predominant menaquinone. The polar lipid profiles of all strains contained diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The sizes of the genomes of the stains ranged from 5.66 to 9.07 Mb and the associated G+C contents ranged from 37.9% to 44.7%. Polyphasic taxonomic study including determination of genome relatedness indices revealed that the strains are representatives of three novel species in the genus Paenibacillus. Consequently, isolates T3-5-0-4, N1-5-1-14 and N5-1-1-5 are proposed as novel species for which the names of Paenibacillus endoradicis sp. nov. (CFCC15691T = KCTC43441T), Paenibacillus radicibacter sp. nov, (CFCC15694T = KCTC43442T) and Paenibacillus radicis sp. nov. (CFCC15710T = KCTC43173T), respectively. Moreover, analysis for biosynthetic genes showed that the strains have potential for plant growth-promoting characteristics, plant rhizospheres colonization and low-temperature adaption, most of which are consistent with the results of the bioactivity test.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference74 articles.

1. Potential of Biofertilizers to Replace Chemical Fertilizers;Suhag;Int. Adv. Res. J. Sci. Eng. Technol.,2016

2. Bacterial Biofertilizers for Sustainable Crop Production: A Review;Khosro;ARPN J. Agric. Bol. Sci.,2012

3. Plant growth-promoting effects of native Pseudomonas strains on Mentha piperita (peppermint): An in vitro study;Santoro;Plant Biol.,2015

4. González-Andrés, F., and James, E. (2015, January 16–18). Analysis of the PGPB Potential of Bacterial Endophytes Associated with Maize-Biological Nitrogen Fixation and Beneficial Plant. Proceedings of the Microbe Interactional Meeting of the Spanish Society of Nitrogen Fixation, León, Spain.

5. Gupta, A., Gopal, M., Thomas, G.V., Manikandan, V., Gajewski, J., Thomas, G., Seshagiri, S., Schuster, S.C., Rajesh, P., and Gupta, R. (2014). Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. PLoS ONE, 9.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3