Comprehensive Genomic Characterization of Cronobacter sakazakii Isolates from Infant Formula Processing Facilities Using Whole-Genome Sequencing

Author:

Mousavi Zeinab Ebrahimzadeh123ORCID,Koolman Leonard1,Macori Guerrino1ORCID,Fanning Séamus1ORCID,Butler Francis2ORCID

Affiliation:

1. UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland

2. School of Biosystems and Food Engineering, University College Dublin, D04 V1W8 Dublin, Ireland

3. Department of Food Science and Engineering, Faculties of Agriculture and Natural Resources, University of Tehran, Karaj 6719418314, Iran

Abstract

Cronobacter sakazakii is an opportunistic pathogen linked to outbreaks in powdered infant formula (PIF), primarily causing meningitis and necrotizing enterocolitis. Whole-genome sequencing (WGS) was used to characterize 18 C. sakazakii strains isolated from PIF (powdered infant formula) manufacturing plants (2011–2015). Sequence Type (ST) 1 was identified as the dominant sequence type, and all isolates carried virulence genes for chemotaxis, flagellar motion, and heat shock proteins. Multiple antibiotic resistance genes were detected, with all isolates exhibiting resistance to Cephalosporins and Tetracycline. A significant correlation existed between genotypic and phenotypic antibiotic resistance. The plasmid Col(pHAD28) was identified in the isolates recovered from the same PIF environment. All isolates harbored at least one intact phage. All the study isolates were compared with a collection of 96 publicly available C. sakazakii genomes to place these isolates within a global context. This comprehensive study, integrating phylogenetic, genomic, and epidemiological data, contributes to a deeper understanding of Cronobacter outbreaks. It provides valuable insights to enhance surveillance, prevention, and control strategies in food processing and public health contexts.

Funder

Enterprise Ireland and the European Union’s Horizon 2020 Research and innovation Program

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3