Changes in Soil Bacterial Community and Function in Winter Following Long-Term Nitrogen (N) Deposition in Wetland Soil in Sanjiang Plain, China

Author:

Zhang Rongtao1,Fu Xiaoyu1,Zhong Haixiu1,Sui Xin2,Liu Yingnan1

Affiliation:

1. Institution of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China

2. Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150040, China

Abstract

N deposition is a key factor affecting the composition and function of soil microbial communities in wetland ecosystems. Previous studies mainly focused on the effects of N deposition in the soil during the growing season (summer and autumn). Here, we focused on the response of the soil microbial community structure and function in winter. Soil from the Sanjiang Plain wetland, China, that had been treated for the past 11 years by using artificial N deposition at three levels (no intervention in N0, N deposition with 4 g N m−2 yr−1 in N1, and with 8 g N m−2 yr−1 in N2). Soil characteristics were determined and the bacterial composition and function was characterized using high-throughput sequence technology. The N deposition significantly reduced the soil bacterial diversity detected in winter compared with the control N0, and it significantly changed the composition of the bacterial community. At the phylum level, the high N deposition (N2) increased the relative abundance of Acidobacteria and decreased that of Myxococcota and Gemmatimonadota compared with N0. In soil from N2, the relative abundance of the general Candidatus_Solibacter and Bryobacter was significantly increased compared with N0. Soil pH, soil organic carbon (SOC), and total nitrogen (TN) were the key factors affecting the soil bacterial diversity and composition in winter. Soil pH was correlated with soil carbon cycling, probably due to its significant correlation with aerobic_chemoheterotrophy. The results show that a long-term N deposition reduces soil nutrients in winter wetlands and decreases soil bacterial diversity, resulting in a negative impact on the Sanjiang plain wetland. This study contributes to a better understanding of the winter responses of soil microbial community composition and function to the N deposition in temperate wetland ecosystems.

Funder

National Key Research and Development Program

Heilongjiang Provincial Key Research and Development Program

Research expenses of provincial research institutes in Heilongjiang

Heilongjiang Academy of Sciences Special Program for Double Lift Goose Formation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3