Herpes Simplex Virus Type 1 Infection Induces the Formation of Tunneling Nanotubes

Author:

Wang Jie1234,Shang Kun-Te12,Ma Qiong-Hong12,Dong Zhao-Ying12,Chen Yi-Hong12,Yao Yu-Feng12

Affiliation:

1. Department of Ophthalmology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun East Road, Hangzhou 310016, China

2. Key Laboratory for Corneal Diseases Research of Zhejiang Province, 3 Qingchun East Road, Hangzhou 310016, China

3. Department of Ophthalmology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou 310003, China

4. Department of Ophthalmology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 219 Moganshan Road, Hangzhou 310005, China

Abstract

Herpes simplex virus type 1 (HSV-1) is human specific virus. The intercellular transmission of HSV-1 is essential in its pathogenesis. The tunneling nanotube (TNT), a new mode connecting distant cells, has been found to play an important role in the spread of various viruses like human immunodeficiency virus (HIV) and influenza virus. However, whether HSV-1 can be transmitted through TNTs has not been confirmed. The purpose of this study was to clarify this, and further to determine the effect of inhibiting the actin-related protein 2/3 (Arp2/3) complex on the intercellular transmission of HSV-1. A scanning electron microscope and fluorescence microscope detected the formation of TNTs between HSV-1 infected cells. Envelope glycoprotein D (gD) and envelope glycoprotein E (gE) of HSV-1 and viral particles were observed in TNTs. Treatment with CK666, an inhibitor of the Arp2/3 complex, reduced the number of TNTs by approximately 40–80%. At the same time, the DNA level of HSV-1 in cells and the number of plaque formation units (PFU) were also reduced by nearly 30%. These findings indicated that TNT contributes to HSV-1 transmission and that the inhibition of the Arp2/3 complex could impair HSV-1 transmission, which not only provides a novel insight into the transmission mode of HSV-1, but also a putative new antiviral target.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3