Biosynthesis of Silver Nanoparticles from Duchesnea indica Extracts Using Different Solvents and Their Antibacterial Activity

Author:

Kim Se-Min12,Choi Hye-Jo12ORCID,Lim Jeong-A1,Woo Min-Ah1,Chang Hyun-Joo1ORCID,Lee Nari1ORCID,Lim Min-Cheol13

Affiliation:

1. Research Group of Food Safety and Distribution, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea

2. Department of Food Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea

Abstract

Silver nanoparticles (AgNPs) were synthesized using the whole plant of Duchesnea indica (DI) which was extracted in different solvents; the antimicrobial effects of the extract were investigated in this study. The extraction of DI was performed using three different solvents: water, pure ethanol (EtOH), and pure dimethyl sulfoxide (DMSO). AgNP formation was monitored by measuring the UV–Vis spectrum of each reaction solution. After synthesis for 48 h, the AgNPs were collected and the negative surface charge and size distribution of the synthesized AgNPs were measured using dynamic light scattering (DLS). The AgNP structure was determined by high-resolution powder X-ray diffraction (XRD) and the AgNP morphology was investigated using transmission electron microscopy (TEM). AgNP antibacterial activities were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, and Pseudomonas aeruginosa using the disc diffusion method. Additionally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were also determined. Biosynthesized AgNPs showed enhanced antibacterial activity against B. cereus, S. aureus, E. coli, S. enteritidis, and P. aeruginosa compared with that of pristine solvent extract. These results suggest that AgNPs synthesized from extracts of DI are promising antibacterial agents against pathogenic bacteria and can be further applied in the food industry.

Funder

Cooperative Research Program for Agriculture Science and Technology Development

Rural Development Administration, Republic of Korea

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3