Perchlorate-Coupled Carbon Monoxide (CO) Oxidation by Moorella glycerini, an Obligately Anaerobic, Thermophilic, Nickel-Dependent Carboxydotroph

Author:

Myers Marisa R.1,King G. M.1

Affiliation:

1. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA

Abstract

Many facultative and obligate anaerobes reduce perchlorate. Likewise, carbon monoxide (CO) oxidation has been documented in many aerobes, facultative anaerobes, and obligate anaerobes. A molybdenum-dependent CO dehydrogenase (Mo-CODH) and a nickel-dependent CO dehydrogenase (Ni-CODH) distinguish the former from the latter. Some Mo-dependent CO oxidizers (Mo-COX) couple CO oxidation to perchlorate reduction, but only at low concentrations of both under conditions that do not support growth in cultures. In contrast, CO-coupled perchlorate reduction has not been documented in Ni-dependent CO oxidizers (Ni-COX). To assess the potential for Ni-COX to reduce perchlorate, a model, obligately anaerobic homoacetogen, Moorella glycerini DSM 11254T, was cultivated with or without perchlorate, usiing CO or glycerol as its sole carbon and energy source. It grew with glycerol with or without perchlorate, and its maximum cell densities were only weakly affected by the perchlorate. However, when CO (at a 30% headspace concentration) was used as a carbon and energy source, perchlorate reduction supported greater cell densities and more rapid growth rates. The stoichiometry of CO uptake, perchlorate reduction, and chloride production were consistent with the cryptic pathway for perchlorate reduction with chlorite as an end product. Chloride production occurred abiologically in the medium due to a reaction between chlorite and the sulfide used as a reducing agent. These results provide the first demonstration of CO-coupled perchlorate reduction supporting growth in Ni-COX, and they provide constraints on the potential for perchlorate-coupled, anaerobic CO oxidation in engineered systems as well as terrestrial systems and hypothetical, sub-surface, serpentinite-hosted systems on Mars.

Funder

US National Science Foundation

NASA

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3