Effects of Short-Term Nitrogen Addition on Soil Fungal Community Increase with Nitrogen Addition Rate in an Alpine Steppe at the Source of Brahmaputra

Author:

Huang Shaolin12,Yu Chengqun1,Fu Gang1ORCID,Sun Wei1,Li Shaowei1,Han Fusong1,Xiao Jianyu12

Affiliation:

1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

The soil fungal community plays a crucial role in terrestrial decomposition and biogeochemical cycles. However, the responses of the soil fungal community to short-term nitrogen addition and its related dominant drivers still remain unclear. To address this gap, we conducted an experiment to explore how different levels of nitrogen addition (five levels: 0, 2.5, 5, 10, and 20 g N m−2 y−1) affected the soil fungal community in an alpine steppe at the source of Brahmaputra. Results showed that the reduced magnitudes of soil fungal species and phylogenetic α-diversity increased with the increasing nitrogen addition rate. Nitrogen addition significantly changed the community composition of species, and the dissimilarity of the soil fungal community increased with the increasing nitrogen addition rate, with a greater dissimilarity observed in the superficial soil (0–10 cm) compared to the subsurface soil (10–20 cm). Increases in the soil nitrogen availability were found to be the predominant factor in controlling the changes in the soil fungal community with the nitrogen addition gradient. Therefore, short-term nitrogen addition can still cause obvious changes in the soil fungal community in the alpine grassland at the source of Brahmaputra. We should not underestimate the potential influence of future nitrogen deposition on the soil fungal community in the high-altitude grassland of the Qinghai–Tibet Plateau. Adverse effects on the soil fungal community should be carefully considered when nitrogen fertilizer is used for ecosystem restoration of the alpine grassland of the Qinghai–Tibet Plateau.

Funder

Natural Science Foundation Project of the Tibet Autonomous Region

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Key Research Projects of China

National Natural Science Foundation of China

Bingwei Outstanding Young Talents Program of the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences

Tibet Science and Technology Major Projects of the Pratacultural Industry

Construction Project of Fixed Observation and Experimental Station of Support System for Agricultural Green Development in Zhongba County

Central Government Guiding Local Government Project

Natural Science Foundation Project of Tibet Autonomous Region

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3