Effect of Schwertmannite Surface Modification by Surfactants on Adhesion of Acidophilic Bacteria

Author:

Pawlowska Agnieszka,Sadowski Zygmunt

Abstract

Bacterial cell adhesion onto mineral surfaces is important in a broad spectrum of processes, including bioweathering, bioleaching, and bacterial cell transport in the soil. Despite many research efforts, a detailed explanation is still lacking. This work investigates the role of surface-active compounds, cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and pure rhamnolipid (RH), in the process of bacteria attachment on the schwertmannite surface. The surface energy was calculated based on the wettability of the tested systems, and for bacteria it was 54.8 mJ/m2, schwertmannite-SDS 54.4 mJ/m2, schwertmannite-CTAB 55.4 mJ/m2, and schwertmannite-RH 39.7 mJ/m2. The total energy of adhesion estimated based on thermodynamic data was found to be negative, suggesting favorable conditions for adhesion for all examined suspensions. However, including electrostatic interactions allowed for a more precise description of bacterial adhesion under the tested conditions. The theoretical analysis using the extended Derjaguin-Landau-Verwey-Overbeek (DLVO) approach showed a negative value of total adsorption energy only in bacteria-mineral suspensions, where SDS and rhamnolipid were added. The calculated data were in good agreement with experimental results indicating the significance of electrostatic forces in adsorption.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3