Spectroscopy of Magnesium Sulfate Double Salts and Their Implications for Mars Exploration

Author:

Shi Erbin1,Zhang Ruize1,Zeng Xiaojia1,Xin Yanqing1ORCID,Ju Enming1,Ling Zongcheng1ORCID

Affiliation:

1. Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Institute of Space Sciences, Shandong University, Weihai 264209, China

Abstract

Magnesium sulfate has been widely detected on the surface of Mars. The occurrence of magnesium sulfate and mixed cationic sulfates preserves clues regarding the sedimentary environment, hydrological processes, and climate history of ancient Mars. In this study, seven magnesium sulfate double salts were synthesized in the laboratory using a high-temperature solid phase reaction or slow evaporation of aqueous solutions. The samples were analyzed using X-ray diffraction to confirm their phase and homogeneity. Subsequently, the Raman, mid-infrared spectra, and visible near-infrared spectra of these samples were collected and analyzed. Our results showed that the spectra of the analyzed magnesium sulfate double salts exhibited distinctive spectral features. These laboratory results may provide new insights for the identification of various magnesium sulfate double salts on Mars during the interpretation of in situ data collected by Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), SuperCam, and the ExoMars Raman Laser Spectrometer (RLS). In addition, the MIR and VNIR spectra features obtained in this study provide an improved reference and spectra library for decipherment of data sourced from the Thermal Emission Spectrometer (TES), Thermal Emission Imaging System (THEMIS), and Mars Mineralogical Spectrometer (MMS).

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

China Postdoctoral Science Foundation

China National Space Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3