FEMSFNet: Feature Enhancement and Multi-Scales Fusion Network for SAR Aircraft Detection

Author:

Zhu Wenbo12ORCID,Zhang Liu12,Lu Chunqiang12,Fan Guowei12,Song Ying12,Sun Jianbo34,Lv Xueying12

Affiliation:

1. National Geophysical Exploration Equipment Engineering Research Center, Jilin University, Changchun 130026, China

2. College of Instrumentation & Electrical Engineering, Jilin University, Changchun 130061, China

3. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

4. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Aircraft targets, as high-value subjects, are a focal point in Synthetic Aperture Radar (SAR) image interpretation. To tackle challenges like limited SAR aircraft datasets and shortcomings in existing detection algorithms (complexity, poor performance, weak generalization), we present the Feature Enhancement and Multi-Scales Fusion Network (FEMSFNet) for SAR aircraft detection. FEMSFNet employs diverse image augmentation and integrates optimized Squeeze-and-Excitation Networks (SE) with residual network (ResNet) in a SdE-Resblock structure for a lightweight yet accurate model. It introduces ssppf-CSP module, an improved pyramid pooling model, to prevent receptive field deviation in deep network training. Tailored for SAR aircraft detection, FEMSFNet optimizes loss functions, emphasizing both speed and accuracy. Evaluation on the SAR Aircraft Detection Dataset (SADD) demonstrates significant improvements compared to the contrasted algorithms: precision rate (92%), recall rate (96%), and F1 score (94%), with a maximum increase of 12.2% in precision, 12.9% in recall, and 13.3% in F1 score.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Reference64 articles.

1. An introduction to synthetic aperture radar (SAR);Chan;Prog. Electromagn. Res. B,2008

2. Franceschetti, G., Migliaccio, M., and Riccio, D. (1995, January 10–14). The SAR simulation: An overview. Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy.

3. Review Article SAR interferometry—Issues, techniques, applications;Gens;Int. J. Remote Sens.,1996

4. Research progress on aircraft detection and recognition in SAR imagery;Qian;J. Radars,2020

5. Fuentes Reyes, M., Auer, S., Merkle, N., Henry, C., and Schmitt, M.J. (2019). Sar-to-optical image translation based on conditional generative adversarial networks—Optimization, opportunities and limits. Remote Sens., 11.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3