Integration of Sentinel-1 and Sentinel-2 Data for Ground Truth Sample Migration for Multi-Temporal Land Cover Mapping

Author:

Moharrami Meysam1ORCID,Attarchi Sara1ORCID,Gloaguen Richard2ORCID,Alavipanah Seyed Kazem1ORCID

Affiliation:

1. Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran 1417853933, Iran

2. Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz Institute Freiberg for Resource Technology (HiF), 09599 Freiberg, Germany

Abstract

Reliable and up-to-date training reference samples are imperative for land cover (LC) classification. However, such training datasets are not always available in practice. The sample migration method has shown remarkable success in addressing this challenge in recent years. This work investigated the application of Sentinel-1 (S1) and Sentinel-2 (S2) data in training sample migration. In addition, the impact of various spectral bands and polarizations on the accuracy of the migrated training samples was also assessed. Subsequently, combined S1 and S2 images were classified using the Support Vector Machines (SVM) and Random Forest (RF) classifiers to produce annual LC maps from 2017 to 2021. The results showed a higher accuracy (98.25%) in training sample migrations using both images in comparison to using S1 (87.68%) and S2 (96.82%) data independently. Among the LC classes, the highest accuracy in migrated training samples was found for water, built-up, bare land, grassland, cropland, and wetland. Inquiries on the efficiency of different spectral bands and polarization used in training sample migration showed that bands 4 and 8 and VV polarization in the water class were more important, while for the wetland class, bands 5, 6, 7, 8, and 8A together with VV polarization showed superior performance. The results showed that the RF classifier provided better performance than the SVM (higher overall, producer, and user accuracy). Overall, our findings suggested that shared use of S1 and S2 data can be used as a suitable means for producing up-to-date and high-quality training samples.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3