Affiliation:
1. Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2. Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
3. Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
Abstract
Over the past three decades, China has seen aerosol levels substantially surpass the global average, significantly impacting regional climate. This study investigates the long-term and seasonal variations of aerosols in the Huai River Basin (HRB) using MODIS, CALIOP observations from 2007 to 2021, and ground-based measurements. A notable finding is a significant decline in the annual mean Aerosol Optical Depth (AOD) across the HRB, with MODIS showing a decrease of approximately 0.023 to 0.027 per year, while CALIOP, which misses thin aerosol layers, recorded a decrease of about 0.016 per year. This downward trend is corroborated by improvements in air quality, as evidenced by PM2.5 measurements and visibility-based aerosol extinction coefficients. Aerosol decreases occurred at all heights, but for aerosols below 800 m, with an annual AOD decrease of 0.011. The study also quantifies the long-term trends of five major aerosol types, identifying Polluted Dust (PD) as the predominant frequency type (46%), which has significantly decreased, contributing to about 68% of the total AOD reduction observed by CALIOP (0.011 per year). Despite this, Dust and Polluted Continental (PC) aerosols persist, with PC showing no clear trend of decrease. Seasonal analysis reveals aerosol peaks in summer, contrary to surface measurements, attributed to variations in the Boundary Layer (BL) depth, affecting aerosol distribution and extinction. Furthermore, the study explores the influence of seasonal wind patterns on aerosol type variation, noting that shifts in wind direction contribute to the observed changes in aerosol types, particularly affecting Dust and PD occurrences. The integration of satellite and ground measurements provides a comprehensive view of regional aerosol properties, highlighting the effectiveness of China’s environmental policies in aerosol reduction. Nonetheless, the persistence of high PD and PC levels underscores the need for continued efforts to reduce both primary and secondary aerosol production to further enhance regional air quality.
Funder
Civil Aerospace Technology Pre-research Project
Strategic Priority Research Program of the Chinese Academy of Sciences
Anhui Province 2017 High-level Science and Technology Talent Team Project
Key Program of 13th Five-Year Plan, CASHIPS